
Cafesterol – version 1.4

http://cafesterol.x9c.fr

Copyright c© 2007-2010 Xavier Clerc – cafesterol@x9c.fr
Released under the QPL version 1.0

February 6, 2010

Abstract: This document presents Cafesterol, its purpose and its relation to OCaml-Java. This
document explains how to build, and how to run Cafesterol, as well as its compatibility level with
the standard Objective Caml compilers.

Introduction

OCaml-Java is an effort to make Objective Caml1 available on the Java2 platform, currently sup-
porting version 3.11.2. The project has two concrete objectives: first, the ability to run Objective
Caml sources that have been compiled using ocamlc; second, the ability to compile Objective Caml
sources into executable Java jar files.

Cafesterol is an extension of the Objective Caml compiler suite that generates Java bytecode. Cafes-
terol provides an ocamljava compiler that is the Java counterpart of ocamlc/ocamlopt compilers
shipped with the Objective Caml standard distribution.

Cafesterol, in its 1.4 version builds with the 3.11.2 version of Objective Caml. The produced Java
classes need the 1.4 version of Cadmium to run (precisely, the ocamlrun.jar file) and can be
executed on any Java 1.6 virtual machine.

Build process

Cafesterol is written in the Objective Caml language. It thus needs ocamlc/ocamlopt to be in-
stalled, as well as the Objective Caml standard library. It also depends on Barista3 and Camlzip4.
Barista in turn also depends on Camomile5. This dependency chain implies that the build process
is quite involved.

In the following, the mandatory steps allow to compile ocamljava (and ocamljava.opt) compil-
ers as well as the standard library and other libraries from the standard distribution (bigarray,

1The official Caml website can be reached at http://caml.inria.fr and contains the full development suite
(compilers, tools, virtual machine, etc.) as well as links to third-party contributions.

2The official website for the Java Technology can be reached at http://java.sun.com.
3Library for Java class file manipulation – available at http://barista.x9c.fr.
4Library for zip/gzip/jar manipulation – available at http://cristal.inria.fr/~xleroy/software.html.
5Unicode library – available at http://camomile.sourceforge.net.

1

http://cafesterol.x9c.fr
mailto:cafesterol@x9c.fr
http://caml.inria.fr
http://java.sun.com
http://barista.x9c.fr
http://cristal.inria.fr/~xleroy/software.html
http://camomile.sourceforge.net


dbm, dynlink, graph, labltk, num, str, systhreads, threads, and unix). From this point, it is pos-
sible to use ocamljava like ocamlc or ocamlopt to produce some Java binaries from ml/mli sources.

The optional steps allow to produce Cafesterol-compiled version of ocamlc, ocamlopt, and ocamljava
(it results in ocamlc.jar, ocamlopt.jar, and ocamljava.jar), as well as some additional tools.
Steps from seven to nine are not required to build ocamlc.jar or ocamlopt.jar; they are only
required to build ocamljava.jar.

The following steps suppose you want to install all the elements into their default locations.

First step: build Objective Caml 3.11.2 To build Objective Caml from source, after the
source archive has been unzipped, it is sufficient to run ./configure followed by make word.opt
and then make install as root.

Second step: install Camomile 0.7.2 To build Camomile from source, after the source archive
has been unzipped, it is sufficient to run ./configure followed by make and then make install
as root.

Third step: install Camlzip 1.04 To build Camlzip from source, after the source archive has
been unzipped, it is sufficient to run make all allopt and then make install installopt as
root. You may need to edit the Makefile to modify the location of the Zlib C library.

Fourth step: install Barista 1.4 To build Barista from source, after the source archive has
been unzipped, it is sufficient to run make all and then make install-all as root. You may need
to edit the Makefile to modify the paths.

Fifth step: compile Cafesterol First, uncompress the Cafesterol source distribution. Then,
copy all files from its src directory into the directory that contain the Objective Caml source distri-
bution you created at step 1 (the simplest is to use cp -R /path/to/cafesterol/src/* /path/to/
ocaml-3.11.2). You can now build Cafesterol by running make -f Makefile-cafesterol from
the Objective Caml directory. At last, run make -f Makefile-cafesterol install to install the
Cafesterol compiler (both ocamljava and ocamljava.opt) as well as the Objective Caml libraries
built with these compilers.

Sixth step: install Cadmium 1.4 To build Cadmium from source, after the source archive has
been unzipped, it is sufficient to run ant deploy-base and make all, followed by ant install-base
and make install as root.

[optional] Seventh step: compile Camomile with Cafesterol First, get the Makefile-cafesterol
for Camomile from the Cafesterol website. Then, copy this file into the unarchived source directory
of Camomile you created at step 2. Finally, run make -f Makefile-cafesterol all, and make
-f Makefile-cafesterol install as root.

[optional] Eighth step: compile Camlzip with Cafesterol First, get the Makefile-cafesterol
for Camlzip from the Cafesterol website. Then, copy this file into the unarchived source directory
of Camlzip you created at step 3. Finally, run make -f Makefile-cafesterol all, and make -f
Makefile-cafesterol install as root.

2



[optional] Ninth step: compile Barista with Cafesterol Just run make cafesterol and
make install-cafesterol (as root) from the Barista directory.

[optional] Tenth step: compile compilers with Cafesterol Return to the Objective Caml
source distribution directory and run make -f Makefile-cafesterol compilers and make -f
Makefile-cafesterol install-compilers as root. It will build and install ocamlc.jar, ocamlopt.jar,
and ocamljava.jar.

[optional] Eleventh step: compile tools with Cafesterol Still from the Objective Caml
source distribution directory, run make -f Makefile-cafesterol tools and make -f Makefile-cafesterol
install-tools as root. It will build and install ocamllex.jar, ocamldoc.jar, ocamldep.jar, and
ocamlbuild.jar.
The ocamllex.jar and ocamldoc.jar tools are identical to their classical counterparts. The
ocamldep.jar tool is almost identical to its counterpart, except that the cmx extension is replaced
with cmj. Finally, the ocamlbuild.jar tool is an enhanced version, compared to the original
one: it has builtin rules to compile files using the ocamljava compiler. In this version, support
for ocamlbuild.jar is experimental6, and one should use the target module-standalone.jar to
compile with ocamljava, where module.byte and module.native would be used with the original
ocamlbuild.

[optional] Twelfth step: compile camlp4 with Cafesterol From the Objective Caml source
distribution directory, run make -f Makefile-cafesterol camlp4 and make -f Makefile-cafesterol
install-camlp4 as root. It will build and install the camlp4 libraries and tools.

Overview of the compiler

The ocamljava compiler tries to mimic the behaviour of the standard compiler as much as possible.
It accepts the same source files as input. Table 1 shows the file types used and produced by the
various compilers. On a side note, one may notice that .jo files follow the jar file format. .jo
and .jar files contain two entries per Objective Caml module: a Java class file and a .consts file
(it represents the module constants in Objective Caml marshalled format). An executable jar file
also contain a cafesterolMain class that is the entry point of the executable.

File kind ocamlc ocamlopt ocamljava
interface source .mli .mli .mli

implementation source .ml .ml .ml
compiled interface .cmi .cmi .cmi

compiled implementation .cmo .cmx .cmj
implementation binary - .o .jo

compiled library .cma .cmxa .cmja
library binary - .a, .so, ... .jar

plugin - .cmxs .cmjs
additional primitives .c .c .java

Table 1: Files types for the various compilers.

6Which means, among other things, that its behaviour and rules may change in future releases.

3



Detailed information about runtime is available in the Cadmium documentation. In particular, the
Cadmium documentation explains how to enhance the standard runtime with additional primitives
(for Objective Caml external declarations).

Options

The ocamljava compiler recognizes the following options:

-a build a library (.cmja and .jar files) from passed .cmj files;

-additional-class file add the class to the created jar file;

-additional-file file[: path] add the file to the created jar file (path is the path of the file
inside the jar file);

-additional-jar file add the file to the dependency list;

-applet link as an applet (the applet class is cafesterolApplet in the package set by
-java-package);

-annot dump type information (in .annot file);

-c compile only (no link);

-cadmium-parameter name=value add the binding to the Cadmium runtime parameters for
the produced executable (the following section lists such parameters);

-classpath cp add the passed element to the classpath (used to find primitive providers
beside the builtin ones);

-compact optimize for space rather than for speed;

-config print configuration and exit;

-dtypes same as -annot (deprecated);

-for-pack module generate an object file that will be later used as a submodule;

-g generate debugging information;

-i print inferred signature for module;

-I dir add the given directory to the list of search directories;

-impl file treat the given file as an implementation source;

-inline n set inlining hint to n;

-intf file treat the given file as an interface source;

-intf-suffix s set the interface suffix to s;

-intf suffix s set the interface suffix to s;

4



-java-package pkg set the java package for the produced class files7;

-javac comp set the java compiler8;

-jopt opt pass additional option to Java compiler;

-labels use commuting label mode;

-noassert disable assertion checks;

-nobuiltin do not use builtin primitive list;

-nolabels ignore non-optional labels in types;

-nomerge do not merge service descriptors;

-nostackmap do not generate stack maps;

-nostdlib do not use the standard library;

-o file set output file to file (by default, the executable jar files are named camlprog.jar);

-pack package the passed .cmj files;

-pp command use preprocessor;

-provider fully.qualified.ClassName adds the passed class to the list of primitive providers;

-principal check principality of type inference;

-rectypes allow arbitrary recursive types;

-scripting compile for Java scripting (internal use);

-servlet file link as a servlet (passed file is web.xml servlet descriptor);

-shared produce a dynlinkable plugin;

-standalone link in standalone mode (no dependency, the contents of all referenced jar files
is copied into the produced jar);

-thread generate code supporting threads;

-unsafe disable bound checks;

-v print compiler version, standard library location and exit;

-version print compiler version and exit;

-verbose print external calls before execution;

-w list enable/disable warnings according to list (supports the same convention and the same
warnings as the standard compilers);

-warn-error list treats passed warnings are errors;

-where print location of standard library and exit.
7This flag is active only at compile-time, and not at link-time.
8The Java compiler is only used if ocamljava is presented a .java file on the command line, just the same way

ocamlc/ocamlopt uses the C compiler.

5



Cadmium parameters

The -cadmium-parameter switch allows to specify runtime parameters for a Cafesterol-compiled
program. The following parameters are recognized:

• backtrace either on or off (defaulting to off):
whether exception backtrace should be written;

• exitStoppingJVM either on or off (defaulting to on) :
whether to stop JVM upon program exit (disable to have multiple programs within the same
JVM);

• awt either on or off (defaulting to off):
whether to use AWT for Graphics frame (otherwise, Swing is used);

• javaxSound either on or off (defaulting to off):
whether to use javax.sound package for Graphics beeps (otherwise, mono-tone system beeps
are used);

• jdbm either on or off (defaulting to off):
whether to use the jdbm package for Dbm implementation (otherwise, java.util classes are
used);

• os any of Unix, Cygwin, Win32, MacOS, or Cadmium (defaulting to Unix):
OS value returned by Sys module;

• unixEmulation either on or off (defaulting to off):
whether to enable unix emulation (use of command-line utilities to replace missing primitives);

• embedded either on or off (defaulting to off):
whether to enable embedded mode;

• embeddedBase either on or off (defaulting to ""):
base class for embedded mode;

• simplifiedBacktrace either on or off (defaulting to on):
whether to enable simplified backtrace (does not print methods of classes from the Cadmium
runtime, of java.lang or java.lang.reflect packages).

Running executables produced by ocamljava

Following the Java philosophy, the jar file generated for a program does only contain the code for
this program but not the code of any linked library. In this respect, ocamljava is very different
from both ocamlc and ocamlopt that generate statically-linked standalone binary files.
In order to run a jar file generated for a program, it is thus necessary to provide the JVM with
all the libraries the program depends on. According to the manifest file contained by the program
jar file, the best way to provide the libraries to the JVM is to copy the jar files corresponding to
the libraries into the directory of the program jar file. The jar files of the libraries are generated
along with the cmja files when using the -a switch of the compiler.
At last, the produced program jar files also need ocamlrun.jar (available at http://cadmium.

6

http://cadmium.x9c.fr
http://cadmium.x9c.fr


x9c.fr) to run.

However, a second linking mode is provided: a static linking mode following the Objective Caml
philosophy. This mode is triggered by the -standalone switch. In this linking mode, the contents
of all referenced jar files is copied into the produced jar file. The produced jar file is thus really
standalone (no dependency), at the expense of a bigger produced jar file.

Compatibility with the standard compilers

ocamljava is almost fully compatible with the compilers from the standard distribution. However
it differs on the following points:

• tail calls are optimized only for direct recursion, not for calls to another function (due to a
Java limitation forbidding cross-method jumps);

• object cache is not implemented (it should not alter the behaviour of a program except under
race conditions between threads, as the lack of object cache is essentially a performance issue);

• evaluation order is not guaranteed to be the same as in ocamlc/ocamlopt (however, it should
not be a major problem as evaluation order is not specified in the Objective Caml language);

• pending signals are checked at given points in the generated code, which may result in a worse
reactivity to signals compared to standard compilers;

• stack overflow as well as memory shortage are not diagnosed neither by Cafesterol nor the
Cadmium runtime (it is the JVM that will encounter these limits and raise a Java error);

• backtrace support is rudimentary;

• generated code is subject to compatibillity issues of Cadmium compared to the standard
runtime support (one should refer to the Cadmium documentation for more information);

• ocamljava may raise a compilation error that has no equivalent in ocamlc/ocamlopt: “Can-
not compile x (Java method is too long)”. Such an error is raised when the generated Java
method would be more than 65535-byte long9 (the limit in the current Java specification). To
overcome this error, there are mainly two solutions: (i) split the corresponding function into
several functions, or (ii) decrease the parameter passed to the -inline command-line switch,
if any. Due to the way inlining works, one may have to decrease the inlining aggressiveness
not (only) for the file failing to compile but (also) for files it depends upon.

Some incompatibilities with the standard Objective Caml distribution arise from primitive imple-
mentations. The detailed compatibility information, on a per-primitive basis can be found in the
cadmium-compatibility.pdf file available at http://cadmium.x9c.fr/downloads.html.

9Moreover, this error may be raised when the method size would be between 32768 and 65535 byte long. In this
case, the error is not caused by a Java limitation but by an ocamljava restriction added to keep compilation simple.

7

http://cadmium.x9c.fr
http://cadmium.x9c.fr
http://cadmium.x9c.fr/downloads.html

	Introduction
	Build process
	Overview of the compiler
	Options
	Cadmium parameters
	Running executables produced by ocamljava
	Compatibility with the standard compilers

